
1-out-of-n Oblivious Signatures:
Security Revisited and a Generic Construction

with an Efficient Communication Cost

Tokyo Institute of Technology

1

○Masayuki Tezuka Keisuke Tanaka

Version 2023/12/06

ICISC 2023 Full Presentation Slide

2

(1,n)-Oblivious Signatures Scheme

3

(1,n)-Oblivious Signatures [Chen94]

Signer

𝑠𝑘 𝑣𝑘
User

4

(1,n)-Oblivious Signatures [Chen94]

Signer

𝑠𝑘 𝑣𝑘
User

Make a list of n candidate messages .

5

(1,n)-Oblivious Signatures [Chen94]

Signer

𝑠𝑘 𝑣𝑘
User

Selected

Make a list of n candidate messages .

6

(1,n)-Oblivious Signatures [Chen94]

Signer

𝑠𝑘 𝑣𝑘
User

During the interaction,
singer knows a message list
but has no idea which one
of message is selected.

Selected

Make a list of n candidate messages .

7

(1,n)-Oblivious Signatures [Chen94]

Signer

𝑠𝑘 𝑣𝑘
User

𝜎
User obtain a signature

on the selected message .

𝜎

Anyone can verify a signature.

During the interaction,
singer knows a message list
but has no idea which one
of message is selected.

Selected

Make a list of n candidate messages .

8

(1,n)-Oblivious Signatures [Chen94]

Signer

𝑠𝑘 𝑣𝑘
User

𝜎
User obtain a signature

on the selected message .

𝜎

Anyone can verify a signature.・Ambiguity

・Unforgeability

Security Requirements:

During the interaction,
singer knows a message list
but has no idea which one
of message is selected.

Selected

Make a list of n candidate messages .

Ambiguity [Chen94]

Cannot find out which one of

 is selected by user

during the signing process.

Ambiguity

9

Signer

𝑠𝑘 𝑣𝑘
User

Selected

Make a list of n candidate messages .

𝜎

Unforgeability [Chen94]

Signer

𝑠𝑘 𝑣𝑘
User

For each singing execution,

･Can derive a signature for only 1 of n messages in the list.

･Cannot obtain signatures on two or more messages in the list.

 (e.g.)

･Cannot obtain a signature on a message which is not in the list.

 (e.g.) 10

Selected

Make a list of n candidate messages .

𝜎
Unforgeability

11

Previous works for (1,n)-Oblivious Signatures

Chen [Chen94]
・Notion of (1, n)-oblivious signatures
・The first oblivious scheme

Tso et al. [TOO08]
・Formal definition and security model
・2-move signing scheme

based on DL assumption in ROM

Zhou et al. [ZLH22]
・Generic construction of 2-move signing scheme
 from commitment and a digital signature without ROM

12

Our Contributions

1. Revisit the unforgeability
 security model

2. Second communication
 size improvement.

Chen [Chen94]
・Notion of (1, n)-oblivious signatures
・The first oblivious scheme

Tso et al. [TOO08]
・Formal definition and security model
・2-move signing scheme

based on DL assumption in ROM

Zhou et al. [ZLH22]
・Generic construction of 2-move signing scheme
 from commitment and a digital signature without ROM

13

Syntax and Unforgeability Security model
in the Previous Work

14

Syntax of (1,n)-Oblivious Signature Scheme
2-move (1,n)-OS (KGen, U!, S", Derive, Verify)

15

Syntax of (1,n)-Oblivious Signature Scheme

KGen(1#) → (𝑣𝑘, 𝑠𝑘)

2-move (1,n)-OS (KGen, U!, S", Derive, Verify)

16

Syntax of (1,n)-Oblivious Signature Scheme

Signer(𝑠𝑘) User (v𝑘, 𝑚!, ⋯ ,𝑚$, 𝑗)

KGen(1#) → (𝑣𝑘, 𝑠𝑘)

Signing protocol (U!, S", Derive)

2-move (1,n)-OS (KGen, U!, S", Derive, Verify)

17

Syntax of (1,n)-Oblivious Signature Scheme

U! 𝑣𝑘, 𝑚!, ⋯ ,𝑚" , 𝑗
↓

𝜇, 𝑠𝑡

Signer(𝑠𝑘) User (v𝑘, 𝑚!, ⋯ ,𝑚$, 𝑗)

KGen(1#) → (𝑣𝑘, 𝑠𝑘)

Signing protocol (U!, S", Derive)

2-move (1,n)-OS (KGen, U!, S", Derive, Verify)

18

Syntax of (1,n)-Oblivious Signature Scheme

S# 𝑠𝑘, 𝑚!, ⋯ ,𝑚" , 𝜇
↓
𝜌

U! 𝑣𝑘, 𝑚!, ⋯ ,𝑚" , 𝑗
↓

𝜇, 𝑠𝑡

Signer(𝑠𝑘) User (v𝑘, 𝑚!, ⋯ ,𝑚$, 𝑗)

𝑚!, ⋯ ,𝑚$, 𝜇

KGen(1#) → (𝑣𝑘, 𝑠𝑘)

Signing protocol (U!, S", Derive)

2-move (1,n)-OS (KGen, U!, S", Derive, Verify)

19

Syntax of (1,n)-Oblivious Signature Scheme

S# 𝑠𝑘, 𝑚!, ⋯ ,𝑚" , 𝜇
↓
𝜌

U! 𝑣𝑘, 𝑚!, ⋯ ,𝑚" , 𝑗
↓

𝜇, 𝑠𝑡

Derive(𝑣𝑘, 𝑠𝑡, 𝜌)
↓
𝜎

Signer(𝑠𝑘) User (v𝑘, 𝑚!, ⋯ ,𝑚$, 𝑗)

𝑚!, ⋯ ,𝑚$, 𝜇

𝜌

KGen(1#) → (𝑣𝑘, 𝑠𝑘)

Signing protocol (U!, S", Derive)

2-move (1,n)-OS (KGen, U!, S", Derive, Verify)

20

Syntax of (1,n)-Oblivious Signature Scheme

Verify(𝑣𝑘,𝑚, 𝜎) → 0	or	1

S# 𝑠𝑘, 𝑚!, ⋯ ,𝑚" , 𝜇
↓
𝜌

U! 𝑣𝑘, 𝑚!, ⋯ ,𝑚" , 𝑗
↓

𝜇, 𝑠𝑡

Derive(𝑣𝑘, 𝑠𝑡, 𝜌)
↓
𝜎

Signer(𝑠𝑘) User (v𝑘, 𝑚!, ⋯ ,𝑚$, 𝑗)

𝑚!, ⋯ ,𝑚$, 𝜇

𝜌

KGen(1#) → (𝑣𝑘, 𝑠𝑘)

Signing protocol (U!, S", Derive)

2-move (1,n)-OS (KGen, U!, S", Derive, Verify)

Unforgeability Security Game in [TOO08]
AdversaryChallenger

𝑄	 ← {	},
(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#) 𝑣𝑘

𝜌

(𝑚∗, 𝜎∗)

Signing
query

𝑚∗ 	 ∉ 𝑄 ?

Verify 𝑣𝑘,𝑚∗, 𝜎∗ = 1 ?

𝑚&,!, ⋯ ,𝑚&,$, 𝜇

𝜌 ← S" 𝑠𝑘, 𝑚&,!, ⋯ ,𝑚&,$, 𝜇

𝑄 records signed messages that the adversary has obtained.
21

22

Problems in Unforgeability Security Model
and Countermeasures

Problem 1 (How to Manage Set Q)

𝑄 is a set of signed messages that the adversary has obtained.

By ambiguity, the challenger cannot know which one of message
the adversary gets a signature in each signing query.

AdversaryChallenger

(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#) 𝑣𝑘

𝜌

(𝑚∗, 𝜎∗)

Signing
query

𝑚∗ 	 ∉ 𝑄 ?

Verify 𝑣𝑘,𝑚∗, 𝜎∗ = 1 ?

𝜌 ← S" 𝑠𝑘, 𝑚&,!, ⋯ ,𝑚&,$, 𝜇

𝑚&,!, ⋯ ,𝑚&,$, 𝜇

23

𝑄	 ← {	},

Countermeasure 1
AdversaryChallenger

𝑣𝑘

𝜌

(𝑚∗, 𝜎∗)

Signing
query

(Sequential)

𝑚∗ 	 ∉ 𝑄 ?
Verify 𝑣𝑘,𝑚∗, 𝜎∗ = 1 ?

𝑚&, 𝜎

𝜌 ← S" 𝑠𝑘, 𝑚&,!, ⋯ ,𝑚&,$, 𝜇

If 𝑚& ∉ {𝑚&,!⋯ ,𝑚&,$} or
 Verify 𝑣𝑘,𝑚&, 𝜎 = 0,
 adversary loses the game

𝑚&,!, ⋯ ,𝑚&,$, 𝜇

𝑄 ← 𝑄 ∪ {𝑚&}

24

(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#)
𝑄	 ← {	},

Problem 2 (Trivial Attack)

Adversary Challenger
To simplify the discussion, we assume that 𝑛	is 2.

Problem 2 (Trivial Attack)

Adversary

𝑄 ← 𝑄 ∪ {𝑚!}

Challenger
𝑣𝑘

𝑚!, 𝑚" , 𝜇
𝜌

𝑚!, 𝜎!
Obtain 𝑚!, 𝜎!

Makes signing query twice

To simplify the discussion, we assume that 𝑛	is 2.

Problem 2 (Trivial Attack)

Adversary

𝑄 ← 𝑄 ∪ {𝑚!}

Challenger
𝑣𝑘

𝑄 ← 𝑄 ∪ {𝑚!}

𝑚!, 𝑚" , 𝜇
𝜌

𝑚!, 𝜎!

𝑚!, 𝑚" , 𝜇′

𝑚!, 𝜎!

𝜌′

Obtain 𝑚!, 𝜎!

Obtain 𝑚", 𝜎"

Makes signing query twice

To simplify the discussion, we assume that 𝑛	is 2.

Reuse

Same message list

Problem 2 (Trivial Attack)

Adversary

𝑚∗ 	 ∉ 𝑄
Verify 𝑣𝑘,𝑚∗, 𝜎∗ = 1

𝑄 ← 𝑄 ∪ {𝑚!}

Challenger
𝑣𝑘

𝑄 ← 𝑄 ∪ {𝑚!}

𝑚!, 𝑚" , 𝜇
𝜌

𝑚!, 𝜎!

𝑚!, 𝑚" , 𝜇′

𝑚!, 𝜎!

𝜌′

𝑚∗, 𝜎∗
𝑚∗ ← 𝑚", 𝜎∗ ← 𝜎"

Same message list
Obtain 𝑚!, 𝜎!

Obtain 𝑚", 𝜎"

Makes signing query twice

Submit 𝑚", 𝜎"
as a forgery.

Reuse

To simplify the discussion, we assume that 𝑛	is 2.

Countermeasure 2
AdversaryChallenger

𝑣𝑘

𝜌

(𝑚∗, 𝜎∗)

Signing
query

(Sequential)

(𝑚∗, 𝜎∗) 	∉ 𝑄 ?
Verify 𝑣𝑘,𝑚∗, 𝜎∗ = 1 ?

𝑚&, 𝜎

𝑚&,!, ⋯ ,𝑚&,$, 𝜇𝜌 ← S" 𝑠𝑘, 𝑚&,!, ⋯ ,𝑚&,$, 𝜇
If (𝑚&, 𝜎) 	∈ 𝑄 or
 𝑚& ∉ {𝑚&,!⋯ ,𝑚&,$} or
 Verify 𝑣𝑘,𝑚&, 𝜎 = 0,
 adversary loses the game

𝑄 ← 𝑄 ∪ {(𝑚&, 𝜎)}

2. Prevent refreshing (reusing) signatures.
 We makes sUF security as a defalt! 29

(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#)
𝑄	 ← {	},

1. Signature
 resubmission check!

Problem 3 (Missing Adversary Strategy)

30

To simplify the discussion, we assume that 𝑛	is 2.

Challenger Adversary

Problem 3 (Missing Adversary Strategy)

31

To simplify the discussion, we assume that 𝑛	is 2.

Challenger

𝜌 ← S" 𝑠𝑘, 𝑚!, 𝑚" , 𝜇

Adversary
𝑣𝑘

𝜌

𝑚!, 𝑚" , 𝜇

(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#)
𝑄	 ← {	},

Problem 3 (Missing Adversary Strategy)

3232

Challenger

𝜌 ← S" 𝑠𝑘, 𝑚!, 𝑚" , 𝜇

If (𝑚&, 𝜎) 	∈ 𝑄 or
 𝑚& ∉ {𝑚!, 𝑚"} or
 Verify 𝑣𝑘,𝑚&, 𝜎 = 0,
 adversary loses the game.

Adversary

Instead obtaining
(𝑚∗, 𝜎) s.t.
𝑚∗ ∉ 𝑚!, 𝑚"

𝑣𝑘

𝜌

Give up !

𝑚!, 𝑚" , 𝜇

(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#)
𝑄	 ← {	},

To simplify the discussion, we assume that 𝑛	is 2.

Problem 3 (Missing Adversary Strategy)

33

To simplify the discussion, we assume that 𝑛	is 2.

Challenger

𝜌 ← S" 𝑠𝑘, 𝑚!, 𝑚" , 𝜇

If (𝑚&, 𝜎) 	∈ 𝑄 or
 𝑚& ∉ {𝑚!, 𝑚"} or
 Verify 𝑣𝑘,𝑚&, 𝜎 = 0,
 adversary loses the game.

Adversary

Instead obtaining
(𝑚∗, 𝜎) s.t.
𝑚∗ ∉ 𝑚!, 𝑚"

𝑣𝑘

𝜌

Give up !

𝑚!, 𝑚" , 𝜇

Always loses
the game!

(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#)
𝑄	 ← {	},

→ This security model does not capture this requirement!

Unforgeability security must guarantee that the user cannot
obtain a signature on a message which is not in the list!

Countermeasure 3
AdversaryChallenger

𝑣𝑘

𝜌

(𝑚∗, 𝜎∗)

Signing
query

(Sequential)

(𝑚∗, 𝜎∗) 	∉ 𝑄 ?
Verify 𝑣𝑘,𝑚∗, 𝜎∗ = 1 ?

𝑚&, 𝜎

𝑚&,!, ⋯ ,𝑚&,$, 𝜇𝜌 ← S" 𝑠𝑘, 𝑚&,!, ⋯ ,𝑚&,$, 𝜇

If (𝑚&, 𝜎) 	∈ 𝑄 or
 Verify 𝑣𝑘,𝑚&, 𝜎 = 0,
 adversary loses the game.
If 𝑚& ∉ {𝑚&,!⋯ ,𝑚&,$},
 adversary wins the game.
If 𝑚& ∈ {𝑚&,!⋯ ,𝑚&,$},
 𝑄 ← 𝑄 ∪ {(𝑚&, 𝜎)}

34

Another winning path!
Capture the adversary with
the missing strategy.

(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#)
𝑄	 ← {	},

35

Communication Size Improvement Result
in Our Scheme

36

Communication Message Size

Scheme Building
Block

First
Message 𝝁

Second
Message 𝝆

[ZLH 22] DS
COM

1 com
for 𝑚(

𝑛 sigs
on (𝑚&, 𝜇)

We reduce the second message size !

37

Communication Size Improvement Result

Scheme Building
Block

First
Message 𝝁

Second
Message 𝝆

[ZLH 22] DS
COM

1 com
for 𝑚(

𝑛 sigs
on (𝑚&, 𝜇)

Ours
DS

COM
Merkle Tree

1 com
for 𝑚(

1 sig
on (root, 𝜇)

root: Assigned root node value of the Merkle Tree on 𝑚!, ⋯ ,𝑚$

38

Communication Size Improvement Result

Scheme Building
Block

First
Message 𝝁

Second
Message 𝝆

[ZLH 22] DS
COM

1 com
for 𝑚(

𝑛 sigs
on (𝑚&, 𝜇)

Ours
DS

COM
Merkle Tree

1 com
for 𝑚(

1 sig
on (root, 𝜇)

Ambiguity Security: Hiding COM
Unforgeability Security: sEUF-CMA DS + sBinding COM + Coll resist H

root: Assigned root node value of the Merkle Tree on 𝑚!, ⋯ ,𝑚$

Security of Our Scheme

Summary

・We revisited the unforgeability security model by Tso et al.
 We identify problems and redefine the security model.

・We improve the generic construction by Zhou et al.
 Our scheme offers the smaller second message size.

39

40

Thank you!

41

References

[Chen94] L. Chen. Oblivious signatures. (ESORICS 1994)

[TOO08] R. Tso, T. Okamoto, and E. Okamoto. 1-out-of-n oblivious signatures. (ISPEC 2008)

[YLTTM22] J. You, Z. Liu, R. Tso, Y. Tseng, and M. Mambo. Quantum-resistant 1-out-of-n
oblivious signatures from lattices. (IWSEC 2022)

[ZLH22] Y. Zhou, S. Liu, and S. Han. Generic construction of 1-out-of-n oblivious signatures.
 (IEICE Trans. Inf. Syst. 2022)

[SYL08] C. Song, X. Yin, and Y. Liu. A practical electronic voting protocol based upon oblivious
signature scheme. (CIS 2008)

[CC18] S. Chiou and J. Chen. Design and implementation of a multiple-choice e-voting
scheme on mobile system using novel t -out-of- n oblivious signature.

 (J. Inf. Sci. Eng. 2018).

42

Appendix

43

Application of (1,n)-Oblivious Signatures
E-voting system based on oblivious signatures [SYL08, CC18]

Voter cast the vote for “Bob” with the signature .

𝑠𝑘)*

Voter

List of candidate names.

Alice , Bob , 	⋯

Alice , Bob , 	⋯

𝑣𝑘)*

Bob 𝜎

Election
Administrator

𝜎

Ambiguity Security Game

AdversaryChallenger

(𝑣𝑘, 𝑠𝑘) ← KeyGen(1#)

𝑏 ←+ 0, 1

𝑣𝑘, 𝑠𝑘

𝑚!, ⋯ ,𝑚$, 𝑖,, 𝑖!

𝜇∗, 𝑠𝑡
 ← U! 𝑣𝑘, 𝑚!, ⋯ ,𝑚$, 𝑖-

𝜇∗

𝑏∗
𝑏∗ = 𝑏 ?

Challenge
query

44

45

Commitment Scheme
Commitment Scheme

𝑐𝑘 ←KGen(1#)

𝑐 ←Commit(𝑐𝑘,𝑚; 𝑟)

Sender (𝑐𝑘,𝑚) Receiver(𝑐𝑘)

Open 𝑐𝑘, 𝑐,𝑚; 𝑟 = 1 ?

(𝑐,𝑚, 𝑟)

Hiding: A commitment 𝑐 hides the committed message 𝑚.

Binding: A commitment 𝑐 can only be opened with
 the committed message 𝑚.

Security

46

Digital Signature Scheme
Digital Signature Scheme

(𝑣𝑘, 𝑠𝑘) ←KGen(1#)

𝜎	 ←Sign(𝑠𝑘,𝑚)

Signer (𝑠𝑘,𝑚) Verifier (𝑣𝑘)

Verify 𝑣𝑘,𝑚, 𝜎 = 1 ?

(𝑚, 𝜎)

If an adversary obtains message-signature pairs (𝑚&, 𝜎&)& on their
message choice via signing queries, it is difficult to generate a
forgery (𝑚∗, 𝜎∗) which has not been outputted by singing queries.

Security (Strong EUF-CMA)

47

Merkle Tree

ℎ!! = 𝐻(𝑚$)ℎ!% = 𝐻(𝑚#)ℎ%! = 𝐻(𝑚!)ℎ%% = 𝐻(𝑚%)

Leaves

ℎ% = 𝐻(ℎ%%, ℎ%!) ℎ! = 𝐻(ℎ!%, ℎ!!)

Leaf 0 Leaf 1 Leaf 2 Leaf 3

root

Root Node

= 𝐻(ℎ!, ℎ!)

48

Merkle Tree

ℎ!! = 𝐻(𝑚$)

root

ℎ!% = 𝐻(𝑚#)ℎ%! = 𝐻(𝑚!)ℎ%% = 𝐻(𝑚%)

Root Node

Leaves

ℎ% = 𝐻(ℎ%%, ℎ%!) ℎ! = 𝐻(ℎ!%, ℎ!!)

= 𝐻(ℎ!, ℎ!)

Leaf 0 Leaf 1 Leaf 2 Leaf 3

Path of Leaf 2

𝑝𝑎𝑡ℎ" =(ℎ!!, ℎ,)

49

Generic Construction by Zhou et al. [ZLH22]

𝑐 ←Com.Commit(𝑐𝑘,𝑚&; 𝑟)
U! 𝑣𝑘'(, 𝑚!, ⋯ ,𝑚" , 𝑗

Derive(𝑣𝑘'(, 𝑠𝑡 = (𝑟, 𝑗), 𝜌)

S# 𝑠𝑘'(, 𝑚!, ⋯ ,𝑚" , 𝜇
For 𝑖 ∈ [𝑛],
 𝜎)*(←DS.Sign(𝑠𝑘*(, (𝑚) , 𝜇))

𝜎'(← (𝑐, 𝑟, 𝜎&*()

Signer (𝑠𝑘'(= 𝑠𝑘*()
User (𝑣𝑘'(= 𝑐𝑘, 𝑣𝑘*(,

𝑚!, ⋯ ,𝑚" , 𝑗)

𝑚!, ⋯ ,𝑚"
𝜇 = 𝑐

𝜌 = (𝜎)*())∈["]

A second communication message 𝜌 needs 𝑛 signatures !
Signing on (𝑚&, 𝜇) is seems redundant.

DS: Digital signature scheme
Com: Commitment scheme

Our Improved Scheme

𝑐 ←Com.Commit(𝑐𝑘,𝑚&; 𝑟)
U! 𝑣𝑘, 𝑚!, ⋯ ,𝑚" , 𝑗

Derive(𝑣𝑘, 𝑠𝑡 = (𝑟, 𝑗), 𝜌)

S# 𝑠𝑘, 𝑚!, ⋯ ,𝑚" , 𝜇

Compute the root of
Merkle Tree from 𝑚!, ⋯ ,𝑚"

Signer (𝑠𝑘'(= (𝑠𝑘*(, 𝐻)
User (𝑣𝑘'(= 𝑐𝑘, 𝑣𝑘*(, 𝐻 ,

 𝑚!, ⋯ ,𝑚" , 𝑗)

𝜌 = 𝜎*(𝜎*(←DS.Sign(𝑠𝑘*(, (root, 𝜇))

Compute root of Merkle
Tree from 𝑚!, ⋯ ,𝑚" .
Compute 𝑝𝑎𝑡ℎ&.
𝜎'(← (𝑐, 𝑟, 𝜎&*(,
 root, 𝑝𝑎𝑡ℎ&)1 signature

Check messages in 𝑚!, ⋯ ,𝑚"
are all distinct.

𝑚!, ⋯ ,𝑚"
𝜇 = 𝑐

DS: Digital signature scheme
Com: Commitment scheme
𝐻: Hash function

50

Why Our Model Cannot Be Straightforwardly
Extended to Concurrent Signing Model ?

Adversary Challenger
𝑣𝑘

𝑚!,!, 𝑚!," , 𝜇!
𝜌!

𝑚∗, 𝜎∗ 𝑚∗ ← 𝑚",!, 𝜎∗ ← 𝜎"

Makes signing query
twice concurrently

If we extend our model to concurrent signing setting, there is a problem.

𝑚",!, 𝑚"," , 𝜇"
𝜌"

1st signing query

2nd signing query

Fin 1st signing query

Obtain 𝑚!,!, 𝜎!

Obtain 𝑚",!, 𝜎"

𝑚∗ ∉ 𝑚!,!, 𝑚!,"
Really forgery ? 51

